Measuring universal intelligence: Towards an anytime intelligence test

نویسندگان

  • José Hernández-Orallo
  • David L. Dowe
چکیده

In this paper, we develop the idea of a universal anytime intelligence test. The meaning of the terms “universal” and “anytime” is manifold here: the test should be able to measure the intelligence of any biological or artificial system that exists at this time or in the future. It should also be able to evaluate both inept and brilliant systems (any intelligence level) as well as very slow to very fast systems (any time scale). Also, the test may be interrupted at any time, producing an approximation to the intelligence score, in such a way that the more time is left for the test, the better the assessment will be. In order to do this, our test proposal is based on previous works on the measurement of machine intelligence based on Kolmogorov Complexity and universal distributions, which were developed in the late 1990s (C-tests and compression-enhanced Turing tests). It is also based on the more recent idea of measuring intelligence through dynamic/interactive tests held against a universal distribution of environments. We discuss some of these tests and highlight their limitations since we want to construct a test that is both general and practical. Consequently, we introduce many new ideas that develop early “compression tests” and the more recent definition of “universal intelligence” in order to design new “universal intelligence tests”, where a feasible implementation has been a design requirement. One of these tests is the “anytime intelligence test”, which adapts to the examinee’s level of intelligence in order to obtain an intelligence score within a limited time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measuring Universal Intelligence in Agent-Based Systems Using the Anytime Intelligence Test

This paper aims to quantify and analyze the intelligence of artificial agent collectives. A universal metric is proposed and used to empirically measure intelligence for several different agent decision controllers. Accordingly, the effectiveness of various algorithms is evaluated on a per-agent basis over a selection of abstracted, canonical tasks of different algorithmic complexities. Results...

متن کامل

A (hopefully) Unbiased Universal Environment Class for Measuring Intelligence of Biological and Artificial Systems

The measurement of intelligence is usually associated with the performance over a selection of tasks or environments. The most general approach in this line is called Universal Intelligence, which assigns a probability to each possible environment according to several constructs derived from Kolmogorov complexity. In this context, new testing paradigms are being defined in order to devise intel...

متن کامل

A Measure of Real-Time Intelligence

We propose a new measure of intelligence for general reinforcement learning agents, based on the notion that an agent’s environment can change at any step of execution of the agent. That is, an agent is considered to be interacting with its environment in real-time. In this sense, the resulting intelligence measure is more general than the universal intelligence measure (Legg and Hutter, 2007) ...

متن کامل

Towards ubiquitous task management

In the near future people will be surrounded by intelligent devices embedded in everyday objects where the knowledge and understanding of device attributes and capabilities will be a key enabler. This paper describes the current state of our research in design distributed knowledge based devices as a solution to adapt spoken dialogue systems within ambient intelligence. In this context a spoken...

متن کامل

Evaluating a Reinforcement Learning Algorithm with a General Intelligence Test

In this paper we apply the recent notion of anytime universal intelligence tests to the evaluation of a popular reinforcement learning algorithm, Q-learning. We show that a general approach to intelligence evaluation of AI algorithms is feasible. This top-down (theory-derived) approach is based on a generation of environments under a Solomonoff universal distribution instead of using a pre-defi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Artif. Intell.

دوره 174  شماره 

صفحات  -

تاریخ انتشار 2010